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A statistical theory of spin interactions is presented which takes its starting point from pair transitions 
rather than single-particle transitions. The approach through straightforward perturbation theory applied 
to pairs, and the approach through the time development of the pair-transition operator Sx (t) are shown to 
be equivalent. The averaging over possible pair configurations is performed by means of a weight function 
which allows inclusion of the details of the lattice structure and of departures from random spin distribution. 
Concentration dependence and temperature dependence appear naturally in the formalism. The formalism is 
not intrinsically restricted to a particular type of spin interaction. Magnetic dipole forces, exchange of any 
specified magnitude and any specified finite range, and cross-relaxation effects can be included. Several 
aspects of moment theory are clarified. The existence of asymmetry in certain line shapes is indicated. 
The theory is applied to magnetic dipole interaction and exchange. The Fourier transform of the magnetic 
resonance line shape is derived in an exact, explicit, and semiclosed form, in which the details of the system 
under consideration appear parametrically. A formula is given for all the moments of the line, but it is 
shown that moments bear a direct relationship to the observed half-width only in the limit of very dense spin 
concentration. The results for limiting cases agree with those derived by Anderson and by Kubo and Tomita. 
In particular it appears that the line is always Lorentzian in the center and Gaussian in the wings, and that 
it approaches a pure Lorentzian shape as either the spin concentration or the effective nearest-neighbor 
distance become vanishingly small. 

I. INTRODUCTION 

A GGREGATES of weakly interacting particles are 
characterized by an absorption (or emission) spec­

trum that is nearly identical to the spectrum of the 
individual uncoupled particles, but whose frequencies 
are broadened into bands. The problem of relating a 
microscopically given interaction to the details of a 
macroscopically observed spectral line shape is a general 
one and of long standing. 

A statistical approach to the theory of line shapes 
was initiated by Margenau,1'2 and applied by him to the 
spectra of gases. Similar principles were first applied to 
spin interactions in solids by Anderson.3-6 This ap­
proach rests essentially on the calculation of the auto­
correlation function of the transition operator, e.g., of 
Sx(t). The formalisms of Kubo and Tomita7,8 and of 
Caspers9 likewise are statistical theories which aim at 
approximations to a relaxation function. The complexity 
of the required computations, however, has restricted 
application of these formalisms to the establishment of 
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asymptotic results and to a study of low-order moments, 
which appear as the expansion coefficients of the relaxa­
tion function. 

Most practical calculations of magnetic resonance line 
shapes are based on the moment method of Van Vleck10 

or of Pryce and Stevens.11 This method has been applied 
with considerable success to magnetically concentrated 
systems,12-20 with more questionable success to dilute 
systems.21,22 The moment approach suffers from the 
difficulty that moments are not directly measured ex­
perimentally. One measures the imaginary part of the 
susceptibility, and this information must be inter­
preted in terms of a known line shape to be related to 
moments. 

In the present work we calculate the resonance line 
shape exactly and in detail. Our physical reasoning is 
closely related to that of Margenau and Anderson. We 
make no appeal to moments or to physical plausibility 
arguments, and our results apply to systems of any de­
gree of dilution. The effects of exchange interactions 
can be incorporated precisely, as can the details of the 
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crystal lattice and the possibly nonrandom distribution 
of paramagnetic spins. 

In Sec. II , we consider the relevant two-body prob­
lem. In Sec. I l l , we formulate a statistical scheme for 
summing all pair interactions throughout the crystal. 
Random distribution of spins is assumed over the long 
range, but we leave open the question of short-range 
clustering. In Sec. IV we apply our formulation to mag­
netic dipole interactions and solve the resulting integrals 
exactly. 

II. THE TWO-BODY PROBLEM 

The quantum-mechanical two-body problem is em­
bodied in the two-body Hamiltonian. We consider a 
Hamiltonian 

3C=«8H-(S i+S2)+[F(S i )+ J P(S 2 ) ]+ /S i .S» 
+ ( g i ^ 2 A 3 ) [ S i - S 2 - ( 3 / ^ ) ( r . S 1 ) ( r - S 2 ) ] . (1) 

The first term represents Zeeman energy; the second is a 
crystal field term, which is a polynomial in the spin co­
ordinates having transformation properties appropriate 
to the crystal symmetry; third is the exchange term; the 
fourth term represents the dipole interaction. 

To be able to treat this Hamiltonian by perturbation 
methods it is essential to pick appropriate basis func­
tions. Their choice depends on the relative magnitude 
of the first three terms, since these cannot be diagonal-
ized simultaneously. Of course, it is always possible to 
obtain the zeroth-order states by numerical diagonaliza-
tion, but usually it is sufficient to consider limiting 
situations. 

If / is large, the "coupled" representation, in which 
S r S 2 is diagonal, is appropriate. The wave functions 
are 

*M8=Y< C(ShS^i tnumJf)$m
8Vn*8*, (2a) 

mi 

with 
m2=M—mi, (2b) 

where ^ m i
S l and \pm2

S2 are single-particle functions, and 
C denotes the Clebsch-Gordan coefficients. The matrix 
elements are given in terms of single-particle matrix 
elements by 

<<r,M|3e|S,ikf>= £ C*(5I,52 , (T;MI,M2^) 
mim 

XC(ShS2,S;mhm2,M) 

X (Sifii,Sr2jU213C | SimhS2m2). (3) 

The energy levels in this scheme do not in general bear 
any resemblance to the energy levels for the single 
particle. 

If / is small, an uncoupled representation is appro­
priate. The choice of wave functions now further de­
pends on whether the two spins are alike or not. If the 
spins are unlike (belong to different species or occupy 
inequivalent sites), the wave functions are simply the 
product functions 

*»» = * m W . (4) 

If the spins are alike, the wave functions are 

^mn=(l/v2)[^m
fiVn

fl»=Jb^„5Vmfl»], m?*n (5a) 

= ^mSl^nS2, m=n. (5b) 

The matrix elements for m^n are given by 

(mn\W\ MN) = i((min213C | MiN2)+(n1m2 \ 3C | NXM 2) 

dz (wi»213C | iViikf 2 ) ± <»iw213C | MXN2)). (6) 

The functions defined in Eq. (5) make the particles 
indistinguishable. This indistinguishability has nothing 
to do with Fermi or Bose statistics, since we are dealing 
with localized particles. I t reflects the fact that we can 
devise no experiment to distinguish which member of 
the pair has actually absorbed the radiation, and this in 
turn is a consequence of the symmetry of two-body 
interactions. 

The energy levels in either uncoupled scheme are 
sums of the single-particle energies, and every transition 
in the pair manifold connected by the off-diagonal ele­
ments of the rf spin operator has an energy interval 
that corresponds to some energy interval in the single-
particle manifold. In general there will be numerous pair 
transitions of the same frequency, even if the frequencies 
of the single-particle transitions are all different. 

The choice of one or the other representations speci­
fied by Eqs. (4) or (5) automatically accounts for the 
differences in the interaction between like and unlike 
spins, which were first pointed out by Van Vleck.10 In 
the representation of Eq. (5), operators like S+lSJ are 
diagonal, while in the representation of Eq. (4) they are 
not. 

Having defined a suitable representation, the quanti­
ties of interest are the off-diagonal elements of the rf 
spin operator, which cause radiative transitions be­
tween pair states, and the diagonal elements of the 
dipole operator, which perturb the energy interval be­
tween pair states. The problem of summing these 
dipole perturbations of the pair transition frequencies 
and calculating the distribution of such sums is our 
principal task. 

III. BASIC FORMALISM 

We can approach the problem of summing the pair 
interactions throughout the crystal by taking our start­
ing point either in the frequency domain or in the time 
domain. The first method begins by applying stationary 
perturbation theory to the pair Hamiltonian; the second 
method begins by considering the time development of 
Sx(t). Both approaches yield insight into the physics 
involved, and we shall show that the same result can 
be derived from both. 

A. Approach Through Stationary 
Perturbation Theory 

We consider an atom whose zeroth-order energy struc­
ture contains a pair of levels with separation A £ o = ^ W 
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For notational convenience we work with a shifted 
spectrum so that coo = 0, and the net perturbation caused 
by all the other atoms is co. From the last term in (1) 
it is clear that co is a function of the position coordinates 
r and of the quantum states q of all the other atoms rela­
tive to the one we are considering: 

a>=tt(ri,r2,- ",rN,qhq2,' • - , ^ ) . (7) 

Each possible configuration of perturbers in this 42V-
dimensional space gives some value of «. Our problem 
is somewhat similar to the microcanonical ensemble: Out 
of the total accessible x—q space we wish to find that 
portion corresponding to a given value of co. We do not, 
however, assume equal a priori probabilities. Indeed, 
the detailed exigencies of the physical situation are em­
bodied in a weight function 

Wi=W{riAi). (8) 

We define the following auxiliary quantities: 

- / 

- / 

Wdtdg, (9) 

(10) 

The upper limit of the r integrals remains unspecified for 
the moment. We now impose the following implicit re­
striction on our weight function: 

(ID lim(U/V) = \ , 
V-KO 

where X is a constant. We shall construct a weight func­
tion appropriate to our problem shortly. We may now 
write for the intensity, at some particular value of co, 

Z(co) = / Widtidqv -WNdtNdqN 
UN J 

X5[o)-co(ri- • -tN,qv • - ^ ) ] , (12) 

where 8 is the delta function. Replacing the 5 by its 
Fourier transform, we obtain 

1 r 
/(co) = / Widtidqi • • • W^drndqN 

UNJ 
1 /-00 

X — / exp{—ip[co—a)(rv-rN,qv-qN)2}dp. (13) 
2 T T . / _ 0 0 

We now make the approximation, deferring its discus­
sion for the moment, that the two-body perturbations 
are additive: 

o?(ri- • -tN)qv • 'qN) = Jli w(r,-,^). (14) 

This makes the integrals in (13) separable, and we have 

7(w) = — / er**"*] — / Wdtdqexp\jpco(r,q)2 dp. (15) 

The bracketed expression in (15), which assumes the 
form oo/oo as 2V—»°o, can be handled by the following 
trick of Margenau1: 

1 

U 
I exp(ipa)(r>q))Wdtdq 

1 -a/ Wdtdq 

where 

/ [i — exp(ipo){r}q))2Wdrdq\ 

= [ l - « 7 ' / £ 0 ] , (16) 

' '= [ll-e^irtr,q)y]Wdrdq. (17) 

We now let the number of particles N and the volume V 
go to oo, while the number of particles per unit volume 
ri remains constant. Then U—>XF, by (11). This, of 
course, is the motivation for imposing the condition 
(11) in the first place. Using V=N/nf, we now obtain 
from (16) 

lim — / exp(ipco(r,q))Wdrdq 
x-^LU J J 

= limY 
2V-*oo\ 

n'U\N 

) = < r n ' t / ' A . ( 1 8 ) 

Inserting this result into (15), we obtain 

1 f00 

7 ( w ) = — / eri*>aer<n'u'/»dp. (19) 

If we can construct a suitable function W, and do the 
necessary integrals, our problem is solved. 

We proceed to construct a typical function W. 
To illustrate the flexibility available through the 
use of the weight function, we incorporate the following 
requirements: 

(1) Exchange is large within a radius rh so that the 
coupled scheme is appropriate for r<rh the uncoupled 
fo r^>r i . 

(2) Furthermore we assume that the lattice departs 
from spherical symmetry to an extent that makes it 
necessary to consider discrete sites exactly, within a 
radius r0, and we take r0>ri. For r>r0 a continuous dis­
tribution of magnetic dipoles is assumed. I t can be 
shown23 that this assumption leads to negligible error 
for reasonable values of r0. The use of such a hybrid 
coordinate space is ultimately motivated by the follow­
ing consideration: The lattice sums for moments de­
pend heavily on the near lying sites. On the other hand, 
if the energy falls off as 1/V3, while the number of par­
ticles per dr increases as r2, one would at first sight ex­
pect a logarithmically divergent perturbation sum. This 
paradox alone leads one to suspect that moments do 

23 W. J. C. Grant, Ph.D. thesis, Department of Physics, MIT, 
Cambridge, Massachusetts, 1962 (unpublished). 
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not give a faithful representation of the line shape, and 
demands an investigation of the behavior of the per­
turbation sum at infinity. We wish to build into our 
weight function a formal device for handling simul­
taneously the initial terms of the perturbation sum and 
its asymptotic behavior as well. 

(3) Finally we allow the possibility of a nonrandom 
distribution of spins. We do this by assigning to each 
lattice site r* a number pi, which is defined as the ratio 
of the actual probability of occupation to the probability 
of occupation if the distribution were random. 

The q space [Eq. (7)] is obviously limited to points 
qs with relative weights g8, where the qs are the first-
order dipole perturbations and the gs are the correspond­
ing transition probabilities, for that portion of the pair 
manifold for which AE0=^w0. Our weight function 
therefore will contain the expression 

ILgsKq-q*), (20) 

where 8 is the Dirac delta function. The requirement of 
working with two representations can be expressed in 
terms of the Dirichlet factor, 

D(xi,x2) = l, %\<x<%2 (21a) 

= 0 , otherwise (21b) 

so that expression (20) becomes 

# ( 0 , n ) E gcKq-qc)+D(rh™)j: gud(q-qu), (22) 
c u 

where c and u refer to the coupled and uncoupled energy 
schemes. 

The conditions imposed on the r space can similarly 
be embodied in an expression of the form 

0(O,ro)E vPib{t-Ti)+D(r*,«>). (23) 
i 

The quantity v is the volume per lattice site and is 
needed to keep the dimensionality consistent. 

The total weight function is the product of expressions 
(22) and (23), which we write in expanded form: 

JF(r,?)=l)(0,ri)* E M r - r O E gAq-Qc) 
i c 

+D(rhr0)v E ^<5(r-r,-)E gud(q-qu) 
i u 

+D(r0,^)j:qud(q-qu). (24) 
U 

The complicated appearance of such a weight function 
reflects the complications we have set ourselves to 
handle. 

We can now readily calculate U from Eq. (9). In­
serting (24) into (9) we obtain: 

U=vZZpigc+vZ E Pigu+Xgu[ dr. (25) 
c i = l u z=A+l u J TQ 

We have labeled the atom situated at ri as atom A, and 
the atom situated at r0 as atom B. If we define 

A B fro 
X=vZH pigc+vY, E Pigu-Hgu dx, 

c i=l u i=A+l u J o 

then 

U=X+"£gu dx 

and 

Zgul t 
u Jo 

U 
lim — = E g u . 

(26) 
o 

(27) 

(28) 

Thus W fulfills the condition (11), with \ = T,ugu. 
We calculate V in the same way as U. We first make 

a slight change in notation. Referring to (18) and (19), 
we define the molar concentration n=n'v, and a cor­
responding V'=U'/vY,ugu, so that n'U'/2^ugu = nV. 
Inserting (24) into (17) we now have 

l y 
V'=——£ £ Mc[l-exp(i/xo(r t-,gc))] 

2^ gu c i = 1 

+ E E pigu[rl-exp(ipQ)(xi,qu))li 
u i—A+l 

and 

1 r* 
+ - E gu 

V u JrQ 

l r* 

2 T T J L 

[ l -exp(fpw(r ,g„)) ]* (29) 

e-ip"exp(-nV')dp. (30) 

B. Approach Through Time Development of Sx(t) 

We now rederive our result, using an alternative ap­
proach through the time domain. This approach has 
been discussed by Lowe and Norberg24 for the case of 
the completely filled lattice. Our aim here is to show how 
the time domain theory applies to the randomly popu­
lated lattice and what meaning can be given within this 
framework to the weight function W. 

We begin with, the theorem that the energy density 
spectrum of a signal is the Fourier transform of its 
autocorrelation function. The autocorrelation of a time 
function cp(t) is defined as 

F(p) = (<p(t+p)<p(t))/(\<p(t)\z), (31) 

where the ( ) denote a suitable time average. We are 
concerned with the time signal Sx(t), where Sx refers to 
the entire A"-body system. The Hamiltonian of this 
system is SCo+^C', where 3C' is the dipole energy. As 
with the single pair system, we assume a representation 
in which X0 is diagonal, with eigenvalues E0my E0n, • • •, 
and with co0ww=(£0m—E0n)/fi. If the co0 for allowed 
transitions are not all equal we construct a suitable 
projection of the operator Sx, so as to connect only 

24 J. J. Lowe and R. E. Norberg, Phys. Rev. 107, 46 (1957). 
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states differing in unperturbed energy by the same 
amount. 

As before, we must average over all allowed coordinate 
configurations of the TV-body system. The conventional 
device for averaging over states is the density matrix 
Wij.2b In general, the ensemble average of an operator 
0 is given by 

< O H E ^ A ; = T r ( ^ 0 ) , (32) 

where W is normalized so that 

Tr(W) = l. (33) 

The indices represent symbolically all the indices needed 
to specify the state. 

To clarify our use of the density matrix W, we make 
two remarks: 

(a) The states whose distribution we define by W are 
coordinate configurations of the TV-body system. For 
each such state, there are a vast number of magnetic 
substates. Thus our states are essentially described by 
two quantum numbers, a coordinate label and a mag­
netic label. Since we consider a fixed lattice, there are 
no transitions between coordinate states. Transitions 
between magnetic states are governed by the operator 
Sx. Consequently, there is no time dependence in W; 
the time dependence is contained entirely in Sx. 

We shall use Greek indices to specify the coordinate 
configuration, Latin indices to specify the magnetic 
state within the coordinate configuration. 

(b) We do not define 

Wvll= exp ( -3C , M Ar) /T r [ exp ( -5C/^ r ) ] . 

This definition is appropriate for a description of tem­
perature equilibrium in the canonical ensemble, which 
is not the problem we are trying to describe here by 
means of the density matrix. The notion of tempera­
ture equilibrium is meaningless when one thinks of all 
the possible distributions of impurities in a fixed lattice. 
We define W^ simply as the probability of finding the 
system in the state (/x). The applicable constraints are, 
for the present, left completely at our disposal. 

We now wish to calculate the function 

F(p) = TrlW(Sx(t+p)Sx*(t))/(Sx>(tm • (34) 

We let w and sx represent the single pair matrices cor­
responding to the TV-pair matrices W and Sx. Then 

F(P) = Tvlw(sx(t+p)s^(t))/(sxKt))Y^ (35) 

We eliminate the explicit p dependence of sx by going 
into the Heisenberg representation: 

Sx(t+p) = exp(i3Qp/n)sx(t) exp(—i3Qp/fi) (36) 
and 

(n9k | sx(t+p) | v,j) = exp(icoop) 
X<M,£ I exp(iWp/fi)sx(t) exp(-i3Qfp/n) \ v,j). (37) 

25 R. C. Tolman, Principles of Statistical Mechanics (Oxford 
University Press, London, 1938), Chap. 9. 

The t dependence now cancels out in (35). This is as it 
should be, since the initial time is arbirtary and can 
have no effect on the final result. We write the numera­
tor in (35) explicitly, using the summation convention 
for repeated indices: 

exp(ioo0p)(v | w | n)(n,k | exp(£FC'p/ft) i «>#) 

X (a,a | sx | PfiXfifi | exp(-AC V * ) 17 J) 

x<%il*.*k*>. (38) 
Since our particles are stationary in the lattice, there 
can be no matrix elements between different coordinate 
configurations. Consequently, v—y=f3=a=p,. 

We now make the approximation, deferring its dis­
cussion for the moment, of ignoring the off-diagonal 
elements of 3C': 

The sum (38) now collapses into 

ei»op ^ ^ ^ exp(i«V*/>*2*/• (40) 
H kj 

The co'M,;y are the perturbations of all the single pair 
transitions corresponding to an unperturbed frequency 
co0 and to the coordinate configuration /x. The sx

2
kj are 

the associated transition probabilities and are inde­
pendent of JJL. We take o?o=0, as before, insert (40) 
into (35), and take the Fourier transform: 

1 'r"> 
I ((a)-— / e~ip0} 

X [ E ^ E exp(ia)'p,kj)sx
2kj/ L sx

2kj]Ndp. (41) 
ix kj kj 

This result is identical to that expressed in (15). We 
point out the correspondence between the density 
matrix and the normalized weight function, and the 
appearance of the 2Z $x2, which corresponds, of course, 
to the ]£ g in our weight function. 

C. Approximations and Limitations 

(1) First and obviously we assume that the dipole 
interaction is small compared to the Zeeman energy. 
This is the justification for the first-order approxima­
tions (14) and (39). To be more specific, we consider the 
physical meaning of taking pair interactions to be addi­
tive [Eq. (4)]. We are considering atom Z, and con­
sidering the effect upon it of, say, atom F . What we 
ignore is the fact that atom Y is itself perturbed by all 
the other atoms, X, W, etc. The error we commit is of 
order A#//z, where y is the magnetic moment and Ay. is 
the perturbation in the moment. If we dot both numera­
tor and denominator into H, we have the ratio of the 
perturbation energy to the transition energy, or, in ex­
perimental terms, the ratio of the linewidth to the cen­
ter frequency. In practice, for electron transitions at 
magnetic fields of the order of kilogauss, the error will 
be of the order of 1%. 
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The first-order approximation becomes poor under 
two circumstances: (a) At low magnetic fields, the off-
diagonal dipole elements can be expected to give a 
frequency-dependent line shape, (b) In certain cases 
the interaction between nearest neighbors may be 
strong enough for the off-diagonal dipole terms to in­
duce non-negligible correlations. This effect may occur 
when a nuclear moment in a rilled paramagnetic lattice 
finds itself much closer to its nearest neighbor (or neigh­
bors) than to the next successive neighbor shells. 

(2) We require that the signal be small. This condi­
tion is required for the assumption that the magnetic 
distribution of the perturbing spins is a random one, 
or equivalently that it can be characterized by a tem­
perature. We exclude from the present consideration 
situations characterized by large departures from 
equilibrium or by the existence of large externally im­
posed correlations within the spin system. 

(3) The expression for 7(co) in terms of the configura­
tion integrals of Eq. (12) implies a random spatial dis­
tribution of spins. This concept is clearly appropriate 
for a dilute system. In a filled lattice, however, the dis­
tribution is ordered, not random, so that the appropri­
ateness of the formalism is no longer obvious. In par­
ticular, while the configuration counting is equivalent 
to considering the number of ways in which N spins 
can be put into M boxes, one to a box, the passage to a 
continuous integral representation fails to exhibit this 
constraint in any explicit way. Colossal errors in con­
figuration counting are prevented by proper normaliza­
tion, but a precise quantitative description is not ex­
pected for filled lattices. 

Anderson26 has proposed a time domain function 

F«) = nD-»(l-cos«ip)]> (42) 
3 

where j runs over sites and the perturbations with q and 
— q occur in pairs. From Eq. (19) it is clear that our 
time function can similarly be written 

F{t)=11 exp[>(l - coscoyp)]. (43) 
3 

The two expressions are equivalent when n(l — coscoyp) 
is small. This will be true (a) for all values of p when n is 
small, (b) for all values of n when \uP-p1 is small, that is 
as long as we are within the central hump. 

Since we are primarily concerned with randomly 
populated lattices, we have not attempted to formulate 
a systematic correction scheme which would allow a 
more rigorous treatment of the rilled lattice. 

We now discuss several points related to our present 
calculation. 

D. Moment Theory 

As a by-product of our calculation, we can clarify 
several points regarding moment theory. We shall dis­
cuss the following: (1) general expressions for all the 

26 P. W. Anderson, Bull. Am. Phys. Soc. 2, 345 (1957). -

moments, (2) the implications regarding the line shape 
in the limit of vanishing concentrations, (3) the impli­
cations regarding the validity of the moment approach 
to the line shape problem, (4) the existence of odd 
moments. 

(1) To obtain general expressions for all the moments, 
we use the well-known theorem6,7 that, if 

/ ( „ ) = f er*»>F(p)dp (44) 

then 
(a>n) = dnF/d(iPy. (45) 

In our case 
F=<r»v'M. (46) 

From (17), F ,(0) = 0 and F(0) = 1. Taking the deriva­
tives is trivial. We list the first few moments, indicating 
successive derivatives of V by subscripts to facilitate 
notation. The derivatives are to be understood with re­
spect to ip and evaluated at p = 0 . 

(^)=-nV1
/, (47a) 

(rf)=-nVJ+n*{Vi)\ (47b) 

(w8)= -nVz'+SnWt'VJ+nKV!')*, (47c) 

(co4)= - w F 4 ' + # 2 [ 3 ( F 2 / ) 2 + 4 F i / F 3
/ ] 

~6n'(V1
,)2V2

f+nKV1
,)A. (47d) 

If we write V in a notationally simplified form, using 
s as an over-all index, then 

F = E g . ( l - ^ ) (48) 

and the derivatives of V\ again evaluated at p = 0 , are 

P Y = 0 , (49a) 

Vi'^-Zgsois, (49b) 

F 2 ' = - £ g 8 c o s
2 , (49c) 

T V = - Z g s c o s * . (49d) 

Unlike the moments obtained elsewhere10 j21,24'27 our 
moments contain terms depending on odd derivatives 
of the time function, since we do not exclude asymmetric 
line shapes. On the other hand, some of the three and 
higher multiparticle terms are missing from our mo­
ments. In the language of Bersohn and Das, we sum all 
2-particle diagrams but we sum ^-particle diagrams 
only if they can be represented as linked 2-particle dia­
grams, linked by the same particle. 

By making our transition probabilities g tempera­
ture-dependent, we arrive substantially at the tem­
perature-dependent moments discussed by McMillan 
and Opechowski.20 We write V from (29) in the sche­
matic form 

r = E E &,• * W £ L Km, (50) 
M7 ij MY id 

« R. Bersohn and T. P. Das, Phys, Rev. 130, 98 (1963). 

file:///uP-p1
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where the Greek indices represent the summation over 
lattice points, the Latin indices the summation over 
pair transitions. The derivatives of the FM„# are similar 
to the ones given in (49), but without the summation 
that appears there. The g's are, explicitly, 

g„tf = I <M£ I SX | Vj) | 2(e-E,k/kT_e-EVj-/kT) m ( 5 1 ) 

If we insert these expressions into the moment formulas 
(47), then the first term of each formula corresponds 
exactly to the formulas given by McMillan and 
Opechowski. The reason these authors obtain only the 
first term is that they implicitly define concentration-
independent moments at the outset. 

(2) We notice that in the limit of vanishing concen­
trations the quantities (com) are all linear in the con­
centration. This means that the quantities (com)1/m have 
the property that, for N>M, the ratio (o)N)1/N/(o)M)1/M 

always tends to infinity as the concentration tends to 
zero. This means that all moments, beginning with the 
second, diverge. This immediately precludes the pos­
sibility of a finite cutoff for the line shape as well as the 
possibility of any sort of exponential f alloff in the wings, 
at vanishing concentrations. We observe that this re­
sult is completely independent of the specific inter­
action mechanism or of the specific physical details of 
the system. 

(3) We also notice that moments are essentially the 
Maclaurin coefficients of the Fourier transform of the 
line shape. I t is in this sense that a knowledge of the 
moments implies a knowledge of the line shape. To ob­
tain the line shape at the origin, we need to know the 
behavior of the transform to infinity. This information 
is not in general accessible through a Maclaurin series, 
which is an expansion about zero. 

Some very plausible and physically common line 
shapes have Fourier transforms which do not possess 
convergent expansions about the origin or whose 
Maclaurin series does not exist at all. For example, the 
transform of a Lorentz line has a cusp at the origin— 
the Maclaurin coefficients of F (and the moments of / ) 
all diverge. More generally, if JT=1/P, where P is a 
polynomial of degree N, then the moments of I and the 
Maclaurin coefficients of F will diverge, beginning with 
the iVth. From our remarks in (2) above, at low con­
centrations F tends to a singular function with a dis­
continuous first derivative at the origin. In the limit 
of vanishing concentrations, a moment expansion does 
not exist. 

(4) We observe that the vanishing of the odd mo­
ments is not a necessary consequence of the general 
theory. Equation (49) shows that the odd moments 
vanish if for every cos there exists a partner of the same 
magnitude but of opposite sign, and associated with 
the same transition probability gs. Consider a pure, un­
perturbed Zeeman multiplet; the states are symmetrical 
in m and all the transition frequencies are equal. We 
now consider the first-order effect of a perturbation. If 
the perturbation is described by an even-order tensor, 

it will shift the positive and negative states of the same 
| m | the same way, and consequently will displace the 
transitions symmetrically. The condition for the vanish­
ing of odd moments is then fulfilled, if we look at the 
entire spectrum. This does not mean, however, that it is 
fulfilled for each component line in the spectrum separ­
ately. For the individual lines of a multiplet with 
"zero-field" splitting, odd moments are in general to be 
expected. 

E. Cross Relaxation 

With slight revision of our present method, we can 
formulate a cross-relaxation theory. In other words, we 
could take into account the fact that the off-diagonal 
perturbations actually couple transitions of different 
o?o. Following Bloembergen et al.2S we could treat the 
off-diagonal elements as time-dependent perturbations. 
The off-diagonal elements would appear in place of 
Sx(t) in our development. The expression (40) would 
then become 

E w M E e*«**p E e™'»<WM\W,Vk%NM,ki\*- (52) 
H NM kj 

Here, NM labels the manifold of states with EON—EQM 
= fcoiNM, and kj, as before, labels the individual states 
within such a manifold. SZNMM is the complete off-
diagonal element connecting 3CMM,JJ and SQNNM- For 
dipole interaction, \3CNM,JCJ\2 will now contain terms 
depending on coordinates, such as sin20 cos20/V6 and 
sin40/r6. The cross-relaxation formalism developed by 
Grant29 is essentially based on this approach. 

F. Exchange 

The short range of exchange is handled in moment 
calculations14 by terminating the / sum at the nearest 
neighbor. For the purpose of defining the r dependence 
of / , it obviously makes no difference whether one puts 
a Dirichlet factor into a weight function or into / itself. 
When J is large compared to the transition frequency, 
however, it is unrealistic to assume that the zeroth-
order energy levels and transition probabilities are still 
given by the uncoupled representation. Only when all 
transitions are degenerate, and if one desires only the 
second moment, is the representation immaterial,10 but 
when one is not dealing with a pure Zeeman multiplet, 
the appropriate projection of operators and truncation 
of the Hamiltonian will be profoundly affected. This is 
especially true of moments, which depend heavily on 
near neighbors. 

The effect of exchange on the zeroeth-order energy 
structure also raises similar misgivings about statistical 
two-parameters theories,5,6 in which the dipole "width" 
and the exchange "width" are described by independent 

28 N. Bloembergen, S. Shapiro, P. S. Pershan, and J. O. Artman, 
Phys. Rev. 114, 445 (1959). 

29 W. J. C. Grant, Phys. Rev. 134, A1554 (1964); 134, A1565 
(1964); 134, A1574 (1964). 
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and unique numbers, the dipole width usually being 
derived from a second moment. The second moment de­
pends on / because of the altered energy structure, and 
the averaged effect of exchange is difficult to relate 
directly to the / appearing in the Hamiltonian, since 
the magnitude of the interaction, its range, and all pos­
sible variations of its effect on different transitions, are 
necessarily lumped into one parameter. Our use of the 
appropriate representation, over the appropriate range, 
for the pair Hamiltonian, obviates these difficulties. 

IV. MAGNETIC DIPOLE INTERACTION 

Our next task is to evaluate the integral for /(co), 
given in Eq. (30), and consequently also the integral 
for V contained in (29). We shall first discuss some 
approximations; next we derive an explicit solution for 
the V integral; finally we point out some results ob­
tainable from this solution without detailed numerical 
calculation. 

A. Approximations 

(1) Perhaps the nearest lying prescription for ob­
taining the line shape would be to use its moments, 
which we have already formally obtained. One of our 
chief aims, however, is to extricate ourselves from ques­
tions of convergence and uniqueness which beset mo­
ment expansions. Besides, from a practical point of view, 
the numerical calculation of higher moments involves 
computationally unmanageable lattice sums. 

(2) We consider the expansion of V in powers of ip. 
We might hope in this way to Fourier transform each 
factor separately and then convolute. The first few 
factors are as follows: 

£>— n F ' _ gaOgOlip^ -«2P2g—«3»P3g«4p4 ( 5 3 ) 

where the a's are — Vn
f/nl, with Vn

r the nth derivative 
of V evaluated at p—0. We notice from (49), that a0 = 0, 
and the even a's are all positive. The first factor gives 
5(0), and can be interpreted as determining an ampli­
tude scale factor. The next gives 5(w—#i), or the posi­
tion of the center frequency. The next gives a Gaussian 
of deviation (2a2)1/2, which invites interpretation as a 
half-width. The next term gives a Bessel function: 

5 = 7 ra - 2 / V / 8 [ / i / 8 (* )+ / - . 1 / 8W] , " > 0 
= v5a-2 / 3x1 / 3^i / 3(^) , co<0 (54) 

where J±i/z and K\jz are Bessel functions (see Jahnke 
and Emde30), a=(6.75<z3)1/2 and x = |co3/2 |/«. The 
asymptotic forms for these functions are 

/ 6 7 T \ 1 / 2 /CO8 '2 7T\ 
£ ~ ( — J co~1/4cos( J , co»o; (55a) 

5^(37r /2a) 1 / 2 w- 1 / 4 exp(- |co 3 / 2 | / a ) , c o « - a . (55b) 
30 E. Jahnke and F. Emde, Tables of Functions (Dover Publica­

tions Inc., New York, 1945), reprint, Chap. 8. 

These expressions can be interpreted as containing in­
formation about the asymmetry of the line. To ex­
tract anything more quantitative would require very 
detailed analysis, as we are pitting an extremely rapid 
wiggle on one side against a rapidly decaying exponen­
tial on the other, and it is by no means obvious which 
one will kill the convolution integral faster. 

The next term gives a divergent result. This implies 
no physical divergence, of course, but only that we are 
pushing the technique too far. We have, after all, not 
proven whether and under what circumstances the ex­
pansion of the exponential and convolution of the re­
sults is a convergent process. The failure of the tech­
nique as p-^oo clearly indicates its failure for w~0 . 
A finite cutoff for p, or in other words, the behavior of 
the p integral near the origin, still gives a legitimate 
approximation to the behavior of I(oi) in the far wings. 

(3) The V integral in Eq. (29) has been solved ex­
plicitly by making certain limiting assumptions. We 
consider the integral 

VJ(P)= / {l-exp[ipco(r,9y)]}dr. (56) 

For dipole interaction, co(r,gy) typically has the form 

g2 /32(3cos20-l) 
w(r,&) = qj . (57) 

n rz 

Anderson has calculated this integral,4,31 using the 
following assumptions: (1) The unperturbed system is 
a Kramers doublet. (2) The perturbations with q and 
— q occur with equal probability. (3) r 0 = 0 . The first 
assumption involves no essential limitation. The second 
one is, of course, the condition for the vanishing of odd 
moments, or for the symmetry of the line, which we dis­
cussed in the previous section. I t is not applicable in 
systems where the transitions are not all equal. Its 
effect is to eliminate the imaginary part of V, with 
very great calculational simplification. The third as­
sumption disregards not only the discreteness of the 
lattice, but the existence of a limiting nearest-neighbor 
distance. The effect will be to exaggerate the wings of 
the line somewhat. Anderson's result is a Lorentzian 
with half-width 

n 8TT2 qg2p2 

When assumption (3) is removed, but the angular de­
pendence of the dipole interaction is disregarded instead, 
Anderson derives an expression for the center intensity 
only, in the limit of vanishing concentration: 

lim 7(0) = / o [ l + ( » A ) ] . (59) 
n->0 

We shall make none of these approximations, but we 
shall use Anderson's results as a check on the asymptotic 
behavior of our own results. 

31 P. W. Anderson (private communication). 
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B. Exact Solution 

The exact evaluation of Vj(p), as denned in Eqs. 
(56) and (57), is sketched in the Appendix. A more de­
tailed calculation may be found in Ref. 23. For both 
analytical and computational purposes it is convenient 
to represent Vj(p) in ascending series and asymptotic 
series. The mathematical steps reducing Eq. (A20) of 

Here, the upper sign is for c>0, the lower sign for c < 0 , 

bm= (|)m (63c) 

CO 

fc=|(lk-i-E3-H(^)- (63d) 

In (63c) and (63d) the notation (a)n means (a)n 

= a(a+l)(a+2)- • -(a+n—1), with ( a ) 0 = l , and in 
(63a) and (63b), k= \c\. 

By further expanding the trigonometric functions in 
Eqs. (62), and forming Cauchy products, we obtain a 
pure Maclaurin series for Vj: 

8?r oo r2 m ~ 1 1 m /m\ 

Vj=— E — + - Z ( - ) m - { ) 
9xo ™=2 L ml ml n=o \n / 

x(sn-nj: ]\(ic)m, (64) 
\ P=O p+\) J 

the Appendix to such expansions are again to be found 
in Ref. 23. We use the notation 

Xo==lAo3, (60) 

c={qwg*P/%)p. (61) 

Then the results are: 

Ascending series 

where ( ) are binomial coefficients. W 
We recall that V defined in (29) is essentially 

F '=la t t ice s u m + ( E gjVj/v E gj) (65) 
3 3 

and I(a>) is the Fourier transform of e~nV'. Further steps 
in the detailed calculation of the dipolar line shape re­
quire detailed knowledge of the q's and g's for par­
ticular systems and the numerical inversion of a one-
dimensional Fourier transform. 

We can, however, directly obtain some information 
about the behavior of J(co). 

We can write explicit closed formulas for all the mo­
ments. The derivatives Vn

r which appear in Eqs. (47) 
are very simply related to the coefficients of the 
Maclaurin series (64). We rewrite (64) in the following 

07T oo oo 

ReVj=—[| cos2c—f+cosc E amcm+sinc E a m c m ] , (62a) 

m even m odd 

07T oo oo 

I m F , - = — [ c + § sin2c+cosc E amcm—sine E a w c m ] . (62b) 
9#o m=\ m=0 

m odd m even 

l / m 3*> \ 
am=—( 3m-m £ J; (62c) 

Asymptotic series 

8?T (irk / 7 T \ 1 / 2 r / 7T\ oo / 7T\ oo "1 
R e 7 i = — f - ( - £ 1 / 2 + c o s ( & + - E « - w + s i n ( ^ + - E M ~ H 

9XOIV3 \ 3 / L \ 4 /m=2 \ 4/m=3 J 
m even w odd 

+cos2& E 0m(3£)-w-sin2& E ft»(3*)-*l , (63a) 
m=2 w =3 J 

m even m odd 

87T f /7T\ [" / 7T\ oo / X \ oo 1 

I m 7 y = ± — - ( - W 1 / 2 c o s [ f t + - ) E bfJr»-fun[k+-) E « ~ m 

9tfo I \ 3 / L \ 4/m=3 \ 4 /m=2 J 
w odd m even 

/ 1 v 3 - l \ l 
+cos2& E /3m(3£)-™+sin2£ E Pm(3k)~m +11+— In U . (63b) 

m=3 m=2 \ V3 V3"+l/ J 



A724 G R A N T A N D S 

form: 
8TT / g202XQ\m 

V^—T, a J qr— Mm, (66) 
9x0

 m \ n / 

where am is the expression in square brackets in (64). 
Then by (65) or (29), 

8TT /g2i32x0\
m 

Vm'= m\aJ——\ Zgjqr/Zgi- (67) 
9x0v \ n / J o 

When these Vm' are inserted into expressions (47), 
any number of moments can be calculated readily. For 
instance, for m=2, we obtain a2= — 3/5 and 

16TTX0 g
4/?4 

<«2> = » — E M/7E &• (68) 
15fl # 2 3 3 

We can also determine the behavior of /(co) under 
various limiting conditions by examining the leading 
terms in our series expansions. 

The leading term in the ascending series (64) is pro­
portional to —p2. So for small c, F(p), the Fourier trans­
form of 7(co), looks like a Gaussian. The leading term 
of the asymptotic series (63) is proportional to — | p | , 
so that for large c, F(p) behaves like the Fourier trans­
form of a Lorentzian. Since the asymptotic behavior of 
a function and the behavior of its Fourier transform near 
the origin mutually determine one another, J(w) must 
be asymptotically Gaussian, but Lorentzian near the 
origin. This result is consonant with the work of Kubo 
and Tomita.7,8 

The coefficient in front of the Maclaurin series is pro­
portional to n/x0. If n/xo is large, exp(—nVf) will be­
come small fast; in other words, most of the area of the 
transform comes from the region where it behaves to a 
first approximation like a Gaussian. Consequently, the 
shape will tend to Gaussian for large concentrations and 
small x0. If the reverse conditions hold, the exponential 
falls off slowly, and most of the transform comes from 
the region where the asymptotic series is valid. We then 
obtain a predominantly Lorentzian shape. 

For the Lorentzian limit, keeping only the leading 
terms in (63a), we write 

/

oo 

e-io)pe-A\P\n eBn 

-oo 

= In £ gje
BnAn/l(Any+^2, (69) 

3 

where we have prefixed the factor n%2j gj because our 
machinery normalizes all lines to the same area, and 
where 

4TT 1 
B= . (71) 

3x0 v 
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If we expand the exponential to first order in n, we 
obtain 

I(0)~(2ZgjM)(l+Bn), (72) 
3 

In the limit of vanishing concentrations, we obtain 
a Lorentzian with a half-width An. If there is one pair of 
q% as is assumed by Anderson, we are in exact agree­
ment with his result (58). The expression (72) for the 
center intensity differs from Anderson's result (59) by 
the factor B. This discrepancy lies partly in the fact 
that Anderson omitted the angular dependence in his 
derivation, partly in his choosing xQ so as to make B 
equal to unity. Thus, under the same limiting assump­
tions, our results check with Anderson's. 

We notice that the half-width is independent of Xo 
in this approximation. 

In the Gaussian limit, valid for high concentration, 
I {(a) is characterized by its second moment, which we 
have explicitly calculated in (68). The width is pro­
portional to the square-root of this moment, which im­
plies a dependence on n112 and on r0

_3/2. The n1/2 de­
pendence is, of course, a familiar result in this limiting 
situation. 

I t is possible, in a rough and rather arbitrary sense, to 
define a concentration at which we cross over from the 
Gaussian to the Lorentzian shape. We demarcate the 
borderline between these two extreme approximations 
by the requirement that for c= 1, the Fourier transform, 
exp(—nV), should have 1/e of its value for c—0. 
The value of the concentration so determined depends, 
of course, on the details of the lattice structure and of 
the transitions we are considering. As a typical example 
we might consider the Cr-Cr interactions in ruby. If we 
use #0=0.048988 A - 3 , which corresponds to the near­
est-neighbor distance, the crossover concentration is 
24% for the (J, - | ) transition, 29% for the (f,J) 
transition. If exchange is large as far as the 11th 
neighbor shell, then for the (f ,J) transition a value of 
XQ one-tenth as large would not be unrealistic. The cor­
responding concentration would be 3 % . Since commonly 
used concentrations range from 0 .1% downwards, and 
concentrations much greater than 1% are not physically 
attainable, it is clear that, in this context, we are well in 
the Lorentzian region. On the other hand, if we consider 
interaction with aluminum nuclei, whose concentration 
is practically 100%, we are well in the Gaussian region. 

I t is interesting to test our formulation in the most 
unfavorable case, that of a filled lattice with a well-
defined group of nearest neighbors. The fluorine reso­
nance in CaF2 is a classical example of such a situation. 
When the field is in the [100] direction, the dipole 
interaction is strongly dominated by the six nearest 
neighbors. The Lowe and Norberg24 calculation yields 
a time function with a half-width of 12 /*sec and whose 
tail shows a series of damped beats. The corresponding 
resonance line is a smoothed square shape with a cutoff 
at about 6 G. Our method yields a time function with a 
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half-width of 11 /zsec. The function is nearly Gaussian, 
with insignificant modulation in the wings. The cor­
responding resonance line is a Gaussian with half-
width 5 G. The details are wrong, but even in this case 
the general picture turns out to be correct. 

SUMMARY 

The statistical theory of spin-spin interactions which 
we have presented combines physical generality with 
mathematical simplicity. Its mathematical simplicity 
stems principally from three factors: (1) By working 
from the beginning with a pair concept instead of a 
single-particle concept, we bypass entirely the notational 
encumbrance of projection operators, clarify the defini­
tion of the relevant operators, and considerably facili­
tate the computation of their matrix elements. (2) We 
eliminate the time dependence at a very early stage; 
in fact we can bypass the time-dependent description 
altogether. (3) We avoid the machinery of expansion, 
approximation, and convolution by finding a direct 
solution to the basic integral. As a consequence of the 
mathematical tractability of the formalism, we can in­
clude explicitly the physical details of the problem by 
means of a suitable weight function, and still obtain a 
complete solution. 

In a subsequent paper, we shall make detailed appli­
cation of the present results to the paramagnetic reso­
nances of Cr in ruby. 
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APPENDIX: EVALUATION OF THE 
BASIC INTEGRAL 

We sketch the steps in the evaluation of the integral 

VJ(P) = 2TI dcosdl drr2 

, 1 -co 

T I d cos0 / < 
J-l J r0 

X 1 - e x p 
'ipqjgW (3 cos2d-l) 

L fi 
We set 

a=p(qjgW/fiX3 coM-1), 

x= 1/r3, 

and perform a partial integration to obtain 

(Al) 

(A2) 

(A3) 

2TT r1 

3 J_! 
d cos# 

piaxQ 1 

L XQ XQ 

ia—ia I dx . (A4) 
Jo x J 

The first term in (A4), after some transformations, 
yields 

2TT 

-(-ic)-1/2e-icy(i, Sic), (A5) 

where c=qjXog2fi2p/ti, and x0=r0~
z [Eqs. (60) and (61)], 

and y is the incomplete gamma function.32 The second 
and third terms trivially yield — 47r/3#0 and 0. The x 
integral in the fourth term diverges at x~0. If we re­
place the lower limit by t, we obtain for this term 

4TT fl 

— Id cos#[aSi(a#o) ~ iad(ax0)+ia \n(axo) 
3 Jo 

+ia(/3—\nx0)+ia Inf]. (A6) 

The functions Si and Ci are the sine and cosine integral 
functions30'32 and /5 in Euler's constant. 

We observe that the logarithmic divergence, as t —» 0, 
is independent of 0. If the integration over 6 were con­
tinuous, instead of being an approximation to a lattice 
sum, then £^ildco$d($ cos20— \)\nt would still remain 
zero even as we let / approach zero. Of course t —> 0, cor­
responds to r—>co. Analysis shows that the difference 
between the integral and the discrete sum is propor­
tional to t*]nt, a quantity which vanishes as t—»0. 
The sum over 8 "becomes continuous'' faster than In/ 
becomes infinite; that is, the summation over angles does 
in fact kill the radial divergence. Physically, an energy 
perturbation that falls off as r~3, or slower, gives a di­
verging effect as r increases. We are spared a catastro­
phe, however, because the angular dependence of the 
perturbation produces sufficient cancellation. 

The functions Si(z) and [Ins— Ci(z)] are entire, so 
that there is no intrinsic ambiguity in (A6). To be able 
to continue, however, we must handle Ins and Ci(z) 
separately. Each function has a branch point at the 
origin, and care is needed to treat both singularities in 
an identical manner. 

After a few more changes of variable, interspersed 
with partial integrations, (A6) is brought into the form 

4wi 

9(3c)1/2Xo\ 
e-ic I 11 jwl/2eiwdw 

- f M — j w 1 / 2 ^ l , (A7) 

where w=3c cos20. Each integral has a pole at w=c and 
a branch point at w=0. To guarantee equal treatment of 
both integrals we evaluate 

/ ( l W 
Jo \ w—c/ 

wdw (A8) 

and then specialize to x=l and x=0. With u=xw and 
b=xc, (A8) becomes 

r 8 6 / 2b \ 
x-*/2 / / x \ul/2eiudu. (A9) 

Jo V u~bl 

3VJ: Xo 

32 Higher Transcendental Functions (Bateman Manuscript 
Project) edited by A. Erdely, F. Oberhettinger, W. Magnus, and 
F. G. Tricomi (McGraw-Hill Book Company, Inc., New York, 
1954), Vol. 2. 
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After a little maneuvering, the first term in (A9) gives 

(i/x)^y(hSib). (A10) 

For x= 1 we use the recursion relation for 7 functions32 

to obtain 

i;3/27(i? -3fc)- i(3c)1 /V< f l . (All) 

For x=0, the expansion 

The integral from 3b to 00 in (A 14) is evaluated by 
expanding \/{u—b) in descending powers of u and sub­
stituting t=(u/3b) — l. The nth term of the series in t 
then becomes an integral representation of the con­
fluent hypergeometricfunction,32^(1, § — n, — 3ib). This 
function, in turn, can be written as an incomplete 
gamma function, consistent with our previous notation. 
One finally obtains 

00 (—)nXa+n 

Y O , * ) = Z — -
n=o nl(a-j-n) 

reduces (A10) to 

!(3c)3/2. 

(A12) 

(A13) 

r°° u1/2eiu 00 
/ du= £ (-i)"-1/2b"T(-n+h -3ib). (A17) 

Jzb u—b w=o 

The second term in (A9) is handled by means of the 
following scheme: 

r*° ul,z r™ ullz r uL/z 2b r 
l eiudu= / eiudu— I eiudu. (A 14) lim / 

Jo u—b Jo u—b Jzi, u—b x-*° xs/2J0 

Specializing to x= 1 [see Eqs. (A8) and (A9)J merely 
involves replacing b by c in (A16) and (A17), and x by 1. 
Specializing to x = 0 again involves series expansions 
for incomplete gamma functions. The second term in 
(A9) then becomes 

2b rzhul/2eiu v3—1 
du= 2c3/2 In f-4v3c3/2. (A18) 

u—b V3+1 

The integral from 0 to co is evaluated as a contour in­
tegral in the complex plane, with real axis u and imagi­
nary axis v. For b>0, we choose a counterclockwise path 
around the first quadrant, indenting the contour into 
the first quadrant at the origin and at b. The loop in­
tegral vanishes by Cauchy's integral theorem, and we 
obtain 

r00 u1/2 r00 v1/2e~v 

/ eiudu=7ribl/2eib+i1/2 —dv. (A15) 
Jo u—b Jo v+ib 

The v integral is a representation of the incomplete 
gamma function, and eventually one obtains 

In our contour integration, as well as in certain im­
plied limiting procedures, we have considered c>0. 
The result for c < 0 is the complex conjugate of the re­
sult for c>0. We set 

k=\c\. (A19) 

If c<0 , then ik —> —ik, but k remains unchanged. 
Finally, we collect the integrated terms to obtain 

9v3x0L \ 
-\#+ln-

\3-

^+ i> 

Jo 

-7r1/2kT(hic)+(-i7rc)1/2e-ic 

+^e~ic{-ic)~ll2y{h-3ic)+^3/2){e2ic-3) 

u—b 
-eiudu=Trib1/2eih 

+ (wi)l/2-ieib(irby/2T(i,ib). (A16) 
-e-icY.{-ic)n+l'2Y{-n+h 

n=0 
- 3ic) (A20) 


